

Welcome to PyFireSQL’s documentation!

What is PyFireSQL

PyFireSQL is a SQL-like programming interface to query Cloud Firestore collections using Python.
Cloud Firestore is a NoSQL, document-oriented database.
Unlike a SQL database, there are no tables or rows.
Instead, you store data in documents, which are organized into collections.

There is no formal query language to Cloud Firestore - NoSQL collection/document structure.
For many instances, we need to use the useful but clunky Firestore UI
to navigate, scroll and filter through the endless records. With the UI,
we have no way to extract the found documents.
Even though we attempted to extract and update by writing a unique program for the specific task,
we felt many scripts are almost the same that something must be done to limit the endless program writing.
What if we can use SQL-like statements to perform the data extraction, which is both formal and reusable?
- This idea will be the motivation for the FireSQL language!

Even though we see no relational data model of (table, row, column),
we can easily see the equivalent between table -> collection, row -> document and column -> field
in the Firestore data model. The SQL-like statement can be transformed accordingly.

Install PyFireSQL

$ pip install pyfiresql

To install from [PyFireSQL source](https://github.com/bennycheung/PyFireSQL), checkout the project

cd PyFireSQL
install require packages
pip install -r requirements.txt
install (optional) development require packages
pip install -r requirements_dev.txt

python setup.py install

Programming Interface

In PyFireSQL, we offer a simple programming interface to parse and execute firebase SQL.
Please consult [Firebase Admin SDK Documentation](https://firebase.google.com/docs/admin/setup) to generate the project’s service account credentials.json file.

from firesql.firebase import FirebaseClient
from firesql.sql import FireSQL

make connection to Cloud Firestore
client = FirebaseClient()
client.connect(credentials_json='credentials.json')

query via the FireSQL interface - the results are in list of docs (Dict)
query = "SELECT * FROM Users WHERE state = 'ACTIVE'"
fireSQL = FireSQL()
docs = fireSQL.sql(client, query)

Indices and tables

	Index

	Module Index

	Search Page

FireSQL Parser

The FireSQL parser consists of two parts: the lexical scanner and the grammar rule module. Python parser generator Lark [https://lark-parser.readthedocs.io/en/latest/] is used to provide the lexical scanner and grammar rule to parse the FireSQL statement. In the end, the parser execution generates the parse tree, aka. AST (Abstract Syntax Tree). The complexity of the FireSQL syntax requires an equally complex structure that efficiently stores the information needed for executing every possible FireSQL statement.

For example, the AST parse tree for the FireSQL statement

SELECT id, date, email
 FROM Bookings
 WHERE date = '2022-04-04T00:00:00'

![An Example SQL Parse Tree]({{ site.baseurl }}images/firesql-in-python/sql_parse_tree.jpg)

Figure. Illustration of the parse tree generated by lark

This is delightful to use lark due to its design philosophy, which clearly separate the grammar specification from processing. The processing is applied to the parse tree by the Visitor or Transformer components.

Visitor and Transformer

Visitors and Transformer provide a convenient interface to process the parse-trees that Lark returns. lark documentation defines,

	Visitors - visit each node of the tree, and run the appropriate method on it according to the node’s data. They work bottom-up, starting with the leaves and ending at the root of the tree.

	Transformers - work bottom-up (or depth-first), starting with visiting the leaves and working their way up until ending at the root of the tree.

	For each node visited, the transformer will call the appropriate method (callbacks), according to the node’s data, and use the returned value to replace the node, thereby creating a new tree structure.

	Transformers can be used to implement map & reduce patterns. Because nodes are reduced from leaf to root, at any point the callbacks may assume the children have already been transformed.

Using Visitor is simple at first, but you need to know exactly what you’re fetching, the children chain can be difficult to navigate depending on the grammar which produce the parsed tree.

We decided to use Transformer to transform the parse tree to the corresponding SQL component objects that can be easily consumed by the subsequent processing.

For instance, the former example parse tree is transformed into SQL components as,

SQL_Select(
 columns=[SQL_ColumnRef(table=None, column='id'),
 SQL_ColumnRef(table=None, column='date'),
 SQL_ColumnRef(table=None, column='email')],
 froms=[SQL_SelectFrom(part='Bookings', alias=None)],
 where=SQL_BinaryExpression(operator='==',
 left=SQL_ColumnRef(table=None, column='date'),
 right=SQL_ValueString(value='2022-04-04T00:00:00'))
)

With this transformed data structure, we can write the processor walking through the components and produce a execution plan to the corresponding Firestore queries.

Just Enough SQL for FireSQL

To get going, we don’t need the full SQL parser and transformer for the DML (Data Manipulation Language). We define ONLY the SELECT statement, just enough for Firestore collections query to serve our immediate needs.

FireSQL Grammar

A grammar is a formal description of a language that can be used to recognize its structure. The most used format to describe grammars is the Extended Backus-Naur Form (EBNF). A typical rules in a Backus-Naur grammar looks like this:

 where_clause ::= bool_expression
 bool_expression ::= bool_parentheses
 | bool_expression "AND" bool_parentheses
 | bool_expression "OR" bool_parentheses
 bool_parentheses ::= comparison_type
 | "(" bool_expression "AND" comparison_type ")"
 | "(" bool_expression "OR" comparison_type ")"
 ...
 CNAME ::= ("_"|"/"|LETTER) ("_"|"/"|LETTER|DIGIT)*
 ...

The where_clause is usually nonterminal, which means that it can be replaced by the group of elements on the right, bool_expression. The element bool_expression could contains other nonterminal symbols or terminal ones. Terminal symbols are simply the ones that do not appear as a <symbol> anywhere in the grammar and capitalized. A typical example of a terminal symbol is a string of characters, like “(”, “)”, “AND”, “OR”, “CNAME”.

Collection Path

The Firestore collection has a set of documents. Each document can be nested with more collections. Firestore identifies a collection by a path, looks like Companies/bennycorp/Users means Companies collection has a document bennycorp, which has Users collection.

If we want to query a nested collection, we can specify the collection name as a path.
The paths can be long but we can use AS keyword to define their alias names.

For example, the subcollection Users and Bookings are specified with Companies/bennycorp document.

SELECT u.email, u.state, b.date, b.state
 FROM
 Companies/bennycorp/Users as u JOIN Companies/bennycorp/Bookings as b
 ON u.email = b.email
 WHERE
 u.state = 'ACTIVE' AND
 b.date >= '2022-03-18T04:00:00'

Interesting Firestore Fact: collection path must have odd number of parts.

Document Field and Sub-field

Since Firestore document field can have nested sub-field, FireSQL statement column reference can reach the document sub-fields by quoted string, using the " to escape the field name with . in it. The quoted string can be used anywhere that a column reference is allowed.

For example, the Users document’s location field, which has a sub-field displayName. The sub-field can be reached by "location.displayName"

 SELECT email, "location.displayName"
 FROM Users
 WHERE "location.displayName" = 'Work From Home'

Document ID

Firestore has a unique “document ID” that associated with each document. The document ID is not part of the document fields that we need to provide special handling to access. FireSQL introduced a special field docid to let any statement to reference to the unique “document ID”.

For example, we can select where the document equals to a specific docid in the Users collection. Even though the document does not have docid field, we can also project the docid value in the output.

 SELECT docid, email
 FROM Users
 WHERE docid = '4LLlLw6tZicB40HrjhDJNmvaTYw1'

Due to Firestore admin API limitations, we can ONLY express = equal or IN operators with docid.
For example, the following statement will find documents that in the specified array of docid.

 SELECT docid, email
 FROM Users
 WHERE docid IN ('4LLlLw6tZicB40HrjhDJNmvaTYw1', '74uWntZuVPeYcLVcoS0pFApGPdr2')

More interesting, if we want to project all the fields, including the docid. We can do the select statement like,
docid and * are projected in the output.

 SELECT docid, *
 FROM Users
 WHERE "location.displayName" = 'Work From Home'

DateTime Type

Consistent description of date-time is a big topic that we made a practical design choice.
We are using ISO-8601 [https://en.wikipedia.org/wiki/ISO_8601] to express the date-time as a string,
while Firestore stores the date-time as Timestamp data type in UTC.
For example,

	writing “March 18, 2022, at time 4 Hours in UTC” date-time string, is “2022-03-18T04:00:00”.

	writing “March 18, 2022, at time 0 Hours in Toronto Time EDT (-4 hours)” date-time string, is “2022-03-18T00:00:00-04”.

If in doubt, we are using the following to convert, match and render to the ISO-8601 string for date-time values.

DATETIME_ISO_FORMAT = "%Y-%m-%dT%H:%M:%S"
DATETIME_ISO_FORMAT_REGEX = r'^(-?(?:[1-9][0-9]*)?[0-9]{4})-(1[0-2]|0[1-9])-(3[01]|0[1-9]|[12][0-9])T(2[0-3]|[01][0-9]):([0-5][0-9]):([0-5][0-9])(\.[0-9]+)?(Z|[+-](?:2[0-3]|[01][0-9]):[0-5][0-9])?$'

Pattern Matching by LIKE

The SQL expression LIKE or NOT LIKE can be used for matching string data.

SELECT docid, email, state
 FROM
 Users
 WHERE
 state IN ('ACTIVE') AND
 email LIKE '%benny%'

After the Firebase query, the pattern matching is used as the filtering expression. The SQL processor supports pattern for:

	prefix match pattern%

	suffix match %pattern

	infix match %pattern%

JSON Data

PyFireSQL provides JSON data supports, in particular, for the INSERT and UPDATE statements that must take complex data types.
When the field value needs to take the complex data types, such as array or map (aka. Python dict),
these complex data types must be encoded within a JSON enclosure. The JSON enclosure can interpret any valid JSON object;
subsequently translates into the corresponding Firestore supported data types.

For example,

INSERT INTO Companies/bennycorp/Visits
 (email, event)
 VALUES
 ('btscheung+test1@gmail.com', JSON(["event1","event2","event3"]))

When the collection Visits has a field event which takes an array of event names,
we assign event field by using the JSON enclosure to encode the array ["event1","event2","event3"] with a valid JSON string.

Since we are dealing with Firestore as a document structure without a schema,
we can insert all the key pairs from a JSON map into the collection.

For example, the following insert statement - column specification uses * to indicate all fields.
We are inserting a list of
email, firstName, lastName, groups (as array), roles (as array), vaccination, access (as map).

INSERT INTO Companies/bennycorp/Users
 (*)
 VALUES (
 JSON(
 {
 "email": "btscheung+twotwo@gmail.com",
 "name": "Benny TwoTwo",
 "groups": [],
 "roles": [
 "ADMIN"
],
 "vaccination": null,
 "access": {
 "hasAccess": true
 }
 }
)
)

FireSQL Statements

FireSQL supports the following SQL-like statements.

The set of implemented SQL-like DML (Data Manipulation Language) statements are,

	FireSQL Statement
	Description

	SELECT
	select documents from a collection

	INSERT
	insert new document in a collection

	UPDATE
	modify the existing documents in a collection

	DELETE
	delete existing documents in a collection

Please read the details in the corresponding FireSQL statement sections.

Multiple Statements

The FireSQL.execute() function can take one or more FireSQL statements. Sequence of statements must be separated by semi-colon ‘;’.

For example,

INSERT INTO Users (email, name) VALUES ('btscheung+oneone@gmail.com', 'Benny OneOne');
INSERT INTO Users (email, name) VALUES ('btscheung+twotwo@gmail.com', 'Benny TwoTwo');
INSERT INTO Users (email, name) VALUES ('btscheung+threethree@gmail.com', 'Benny ThreeThree')

	The last FireSQL statement’s semi-colon is optional.

SELECT Statement

The SELECT statement is used to select documents from a collection.

SELECT Syntax

SELECT [[ALL] DISTINCT] field1, field2, ...
FROM collection_name
WHERE conditions

Here, field1, field2, … are the field names of the collection to select data from.
The DISTINCT modifier will select the unique values from field1 and
ALL DISTINCT modifier will select the unique values from all (field1, field2, …).
If we want to select all the fields available in the collection, use the following syntax:

SELECT *
FROM collection_name

By using lark EBNF-like grammar [https://github.com/bennycheung/PyFireSQL/blob/main/firesql/sql/grammar/firesql.lark],
we have encoded the core SELECT statement, which is subsequently transformed into Firestore collection queries to be executed.

	SELECT columns for collection field’s projection

	DISTINCT modifier restricts the result only included the unique field value

	ALL DISTINCT modifier restricts the result only included the unique all fields value

	FROM sub-clause for collections

	FROM/JOIN sub-clause for joining collections (restricted to 1 join)

	WHERE sub-clause with boolean algebra expression for each collection’s queries on field values

	boolean operators: AND (currently OR is not implemented)

	operators: =, !=, >, <, <=, >=

	container expressions: IN, NOT IN

	array contains expressions: CONTAIN, ANY CONTAIN

	filter expressions: LIKE, NOT LIKE

	null expressions: IS NULL, IS NOT NULL

	Aggregation functions applied to the result set

	COUNT for any field

	SUM, AVG, MIN, MAX for numeric field

But the processor has the following limitations, which we can provide post-processing on the query results set.

	No ORDER BY sub-clause

	No GROUP BY/HAVING sub-clause

	No WINDOW sub-clause

SELECT Examples

For example, the following statements can be expressed,

All keywords are case insensitive. All whitespaces are ignored by the parser.

docid is a special field name to extract the selected document’s Id

 SELECT docid, email, state
 FROM
 Users
 WHERE
 state = 'ACTIVE'

The * will select all fields, boolean operator ‘AND’ to specify multiple query criteria.

 SELECT *
 FROM
 Users
 WHERE
 state IN ('ACTIVE') AND
 u.email LIKE '%benny%'

The field-subfield can use the " to escape the field name with . in it.

 SELECT *
 FROM
 Users as u
 WHERE
 u.state IN ('ACTIVE') AND
 u."location.displayName" = 'Work From Home'

The JOIN expression to join 2 collections together

SELECT u.email, u.state, b.date, b.state
 FROM
 Users as u JOIN Bookings as b
 ON u.email = b.email
 WHERE
 u.state = 'ACTIVE' AND
 u.email LIKE '%benny%' AND
 b.state IN ('CHECKED_IN', 'CHECKED_OUT') AND
 b.date >= '2022-03-18T04:00:00'

The COUNT, MIN, MAX, SUM, AVG are the aggregation functions computed against the result set.
Only numeric field (e.g. cost here) is numeric to have a valid value for MIN, MAX, SUM, AVG computation.

SELECT COUNT(*), MIN(b.cost), MAX(b.cost), SUM(b.cost), AVG(b.cost)
 FROM
 Users as u JOIN Bookings as b
 ON u.email = b.email
 WHERE
 u.state = 'ACTIVE' AND
 u.email LIKE '%benny%' AND
 b.state IN ('CHECKED_IN', 'CHECKED_OUT') AND

The DISTINCT modifier will select only the unique field(s).

SELECT DISTINCT email
 FROM
 Bookings
 WHERE
 date > '2022-04-01T00:00:00'

See firesql.lark [https://github.com/bennycheung/PyFireSQL/blob/main/firesql/sql/grammar/firesql.lark] for the FireSQL grammar specification.

INSERT INTO Statement

The INSERT INTO statement is used to insert new document in a collection.

INSERT INTO Syntax

Specify both the column names and the values to be inserted:

INSERT INTO collection_name (field1, field2, field3, ...)
VALUES (value1, value2, value3, ...);

INSERT INTO Examples

The following SQL statement inserts a new document in the Users collection

INSERT INTO Users
 (email, name, vaccination)
 VALUES
 ('btscheung+test1@gmail.com', 'Benny TwoTwo', NULL)

Since we are dealing with Firestore as a document structure without a schema,
we can insert all the key pairs from a JSON map into the collection.

For example, the following insert statement - column specification uses * to indicate all fields.
We are inserting a list of
email, firstName, lastName, groups (as array), roles (as array), vaccination, access (as map).

INSERT INTO Companies/bennycorp/Users
 (*)
 VALUES (
 JSON(
 {
 "email": "btscheung+twotwo@gmail.com",
 "name": "Benny TwoTwo",
 "groups": [],
 "roles": [
 "ADMIN"
],
 "vaccination": null,
 "access": {
 "hasAccess": true
 }
 }
)
)

UPDATE Statement

The UPDATE statement is used to modify the existing documents in a collection.

UPDATE Syntax

UPDATE collection_name
SET field1 = value1, field2 = value2, ...
WHERE condition;

Note: Be careful when updating documents in a collection! Notice the WHERE clause in the UPDATE statement.
The WHERE clause specifies which document(s) that should be updated. If we omit the WHERE clause, all documents in the collection will be updated!

UPDATE Examples

The following UPDATE statement updates the user with email “btscheung+twotwo@gmail.com” to state “ACTIVE” in the “Users” collection:

UPDATE Users
SET
 state = 'ACTIVE'
WHERE
 email = 'btscheung+twotwo@gmail.com'

If we want to update with a field that takes complex data type, e.g. array or map, we must use “JSON()” data enclosure to encode the data.

UPDATE Users
 SET
 state = 'INACTIVE',
 groups = JSON(["TeamA", "TeamB"])
 WHERE
 state = 'ACTIVE' AND
 email = 'btscheung+twotwo@gmail.com'

DELETE Statement

The DELETE statement is used to delete existing documents in a collection.

DELETE Syntax

DELETE FROM table_name
WHERE condition;

Note: Be careful when deleting documents in a collection!
Notice the WHERE clause in the DELETE statement.
The WHERE clause specifies which document(s) should be deleted. If you omit the WHERE clause, all documents in the collection will be deleted!

DELETE Examples

The following DELETE statement deletes the user with email “btscheung+twotwo@gmail.com” from the “Users” collection:

DELETE
 FROM Users
 WHERE
 email = 'btscheung+twotwo@gmail.com'

Future

If you’ve read up to this point, means that you’re having the same pain with Cloud Firestore query. We hope this article motivates you
to try out PyFireSQL. It can be your preferred programming interface to Firestore using Python!

FireSQL has many improvements to be implemented. Just to name a few future improvements,

	multiple JOIN statements in the FROM clause

	allow OR boolean expression in the WHERE clause

	optimize the query plan before sending queries to Firestore

	support sub-query in SELECT clause

Please join me on the PyFireSQL [https://github.com/bennycheung/PyFireSQL] open source project, or provide feedbacks to improve FireSQL utilities!

Programming Interface

In PyFireSQL, we offer a simple programming interface to parse and execute firebase SQL.
Please consult Firebase Admin SDK Documentation [https://firebase.google.com/docs/admin/setup] to generate the project’s service account credentials.json file.

from firesql.firebase import FirebaseClient
from firesql.sql.sql_fire_client import FireSQLClient
from firesql.sql import FireSQL

make connection to Cloud Firestore
client = FirebaseClient()
client.connect(credentials_json='credentials.json')
wrapped as FireSQL client interface
sqlClient = FireSQLClient(client)

query via the FireSQL interface - the results are in list of docs (Dict)
query = "SELECT * FROM Users WHERE state = 'ACTIVE'"
fireSQL = FireSQL()
docs = fireSQL.execute(sqlClient, query)

After fireSQL.execute() query completed, the results are a list of docs (as Dict) that satisfied the query.
Then we can pass the list of docs to render into any output format, in our case, the DocPrinter object can output csv or json with the select fields.

from firesql.sql.doc_printer import DocPrinter

docPrinter = DocPrinter()
if format == 'csv':
 docPrinter.printCSV(docs, fireSQL.select_fields())
else:
 docPrinter.printJSON(docs, fireSQL.select_fields())

For further post-processing, we can use Pandas’s Dataframe to perform any data analysis, grouping, sorting and calculations. The list of docs (as Dict) can be directly imported into Dataframe! very convenience.

import pandas as pd

df = pd.DataFrame(docs)

Query Script

In addition, we provide an interface script firesql-query.py to accept an FireSQL statement.

usage: firesql-query.py [-h] [-c CREDENTIALS] [-f FORMAT] [-i INPUT]
 [-q QUERY]

optional arguments:
 -h, --help show this help message and exit
 -c CREDENTIALS, --credentials CREDENTIALS
 credentials JSON path
 -f FORMAT, --format FORMAT
 output format (csv|json)
 -i INPUT, --input INPUT
 FireSQL query input file (required)
 -q QUERY, --query QUERY
 FireSQL query (required)

For example, finding all ACTIVE users from Users collection

python firesql-query.py -c credential.json \
 -q "SELECT docid, email, state FROM Users WHERE state IN ('ACTIVE')"

docid is a special column name that is used to project the Firestore document ID.

The default query result is rendered in “csv” output format.

"docid","email","state"
"0r6YWowe9rW65yB1qTKsCe83cCm2","btscheung+real@gmail.com","ACTIVE"
"1utcUa9fdheOlrMe9GOCjrJ3wjh1","btscheung+bennycorp@gmail.com","ACTIVE"
"7CUJOqe6rlOTQuatc27EQGivZfn2","btscheung+twotwo@gmail.com","ACTIVE"
...

Alternatively, by specifying the -f json output format, the result will be,

[
 {"docid": "0r6YWowe9rW65yB1qTKsCe83cCm2", "email": "btscheung+real@gmail.com", "state": "ACTIVE"},
 {"docid": "1utcUa9fdheOlrMe9GOCjrJ3wjh1", "email": "btscheung+bennycorp@gmail.com", "state": "ACTIVE"},
 {"docid": "7CUJOqe6rlOTQuatc27EQGivZfn2", "email": "btscheung+twotwo@gmail.com", "state": "ACTIVE"},
 ...
]

SQL Input File

For more complicated SQL, we can use -i input.sql to specify the SQL input file.

input.sql file:

SELECT u.email, u.state, b.date, b.state
 FROM
 Users as u JOIN Bookings as b
 ON u.email = b.email
 WHERE
 u.state IN ('ACTIVE') and
 b.state IN ('CHECKED_IN', 'CHECKED_OUT') and
 b.date >= '2022-03-18T04:00:00'

By execute the input file

python firesql-query.py -c credentials.json -i input.sql

The result will be,

NOTE: the column state from Users will be automatically disambiguated by appending the alias prefix u_state.

"email","u_state","date","state"
"btscheung+bennycorp@gmail.com","ACTIVE","2022-03-18T04:00:00","CHECKED_IN"
"btscheung+bennycorp@gmail.com","ACTIVE","2022-03-18T04:00:00","CHECKED_IN"
"btscheung+hill6@gmail.com","ACTIVE","2022-03-31T04:00:00","CHECKED_IN"
...

API Reference

FireSQL

	
class firesql.sql.fire_sql.FireSQL

	FireSQL is the main programming interface to execute FireSQL statements

During FireSQL initialization, the FireSQL parser is prepared from sql/grammar/firesql.lark.

	
select_fields() → List

	From the parsed FireSQL select statement, return the select fields.

	Parameters:

	None –

	Returns:

	The list of select fields as strings

	
execute(client: FireSQLAbstractClient, sql: str, options: Dict = {}) → List

	Given a Firebase connection, parse and execute all the FireSQL statements.

	Parameters:

	
	client (FirebaseClient) – The client has established a Firebase connection

	sql (str) – FireSQL statement to be executed

	options (Dict) – Unused

	Returns:

	A list of executed documents

	Return type:

	docs

	
execute_command(client: FireSQLAbstractClient, sqlCommand: Union[SQL_Select, SQL_Insert, SQL_Update, SQL_Delete], options: Dict = {}) → List

	Given a Firebase connection, execute a FireSQL statements.

	Parameters:

	
	client (FirebaseClient) – The client has established a Firebase connection

	sqlCommand (SQL_Select|SQL_Insert|SQL_Update|SQL_Delete) – FireSQL statement to be executed

	options (Dict) – Unused

	Returns:

	A list of executed documents

	Return type:

	docs

	
class firesql.sql.doc_printer.DocPrinter

	The DocPrinter class is for printing the select documents as CSV or JSON format output.

Console output in the specified format.

	
printCSV(docs, selectFields)

	printCSV is to print the given list of documents from the select fields in CSV output format

	Parameters:

	
	docs (List of documents as Dict) – the list of documents after FireSQL select query

	selectFields (List of fields to output) – the list of select fields to be picked out from each document (as Dict)

	Returns:

	string output in CSV format

	Return type:

	str

	
printJSON(docs, selectFields)

	printJSON is to print the given list of documents from the select fields in JSON output format

	Parameters:

	
	docs (List of documents as Dict) – the list of documents after FireSQL select query

	selectFields (List of fields to output) – the list of select fields to be picked out from each document (as Dict)

	Returns:

	string output in JSON format

	Return type:

	str

References

For further research and developments, use the following references to start.

FireSQL

	PyFireSQL https://github.com/bennycheung/PyFireSQL

	PyPi https://pypi.org/project/pyfiresql/

Firebase Python

	Google Cloud Firestore https://firebase.google.com/products/firestore

	Google Cloud Firestore Python Client SDK https://googleapis.dev/python/firestore/latest/client.html

	Firebase Admin SDK Documentation https://firebase.google.com/docs/admin/setup

Language Parsing

	Gabriele Tomassetti, Parsing In Python: Tools And Libraries, https://tomassetti.me/parsing-in-python/

	Lark Documentation https://lark-parser.readthedocs.io/en/latest/

	Code Repo: lark-parser [https://github.com/lark-parser/lark]

Similar Projects

The following projects inspired PyFireSQL development. They have a different purpose or different base language.

	From SQL to Ibis Parsing - sql_to_ibis https://github.com/zbrookle/sql_to_ibis

	sql_to_ibis is a Python package that translates SQL syntax into ibis [https://github.com/ibis-project/ibis] expressions. This provides the capability of using only one SQL dialect to target many different backends.

	Ibis: Python data analysis framework for Hadoop and SQL engines, https://ibis-project.org/docs/dev/

	Code Repo: https://github.com/ibis-project/ibis

	Ibis is a Python framework to access data and perform analytical computations from different sources, in a standard way.

	FireSQL (Node.js - Typescript) Project, https://firebaseopensource.com/projects/jsayol/firesql/

	Code Repo: https://github.com/jsayol/firesql

	FireSQL is a library built on top of the official Firebase SDK that allows you to query Cloud Firestore using SQL syntax. It’s smart enough to issue the minimum amount of queries necessary to the Firestore servers in order to get the data that you request.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 firesql	

 	
 	
 firesql.sql.doc_printer	

 	
 	
 firesql.sql.fire_sql	

Index

 D
 | E
 | F
 | M
 | P
 | S

D

 	
 	DocPrinter (class in firesql.sql.doc_printer)

E

 	
 	execute() (firesql.sql.fire_sql.FireSQL method)

 	
 	execute_command() (firesql.sql.fire_sql.FireSQL method)

F

 	
 	FireSQL (class in firesql.sql.fire_sql)

 	
 firesql.sql.doc_printer

 	module

 	
 	
 firesql.sql.fire_sql

 	module

M

 	
 	
 module

 	firesql.sql.doc_printer

 	firesql.sql.fire_sql

P

 	
 	printCSV() (firesql.sql.doc_printer.DocPrinter method)

 	
 	printJSON() (firesql.sql.doc_printer.DocPrinter method)

S

 	
 	select_fields() (firesql.sql.fire_sql.FireSQL method)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyFireSQL’s documentation!

_static/file.png

_static/minus.png

_static/plus.png

